Email this Article Email   

CHIPS Articles: NIST Chip Lights Up Optical Neural Network Demo

NIST Chip Lights Up Optical Neural Network Demo
By CHIPS Magazine - July 30, 2018
Researchers at the National Institute of Standards and Technology have made a silicon chip that distributes optical signals precisely across a miniature brain-like grid, showcasing a potential new design for neural networks.

The human brain has billions of neurons, or nerve cells, each with thousands of connections to other neurons. Many computing research projects aim to imitate brain-like circuits for artificial neural networks. Conventional electronics, including the electrical wiring of semiconductor circuits, cannot support the extremely complex routing required for useful neural networks, NIST said in a release.

The NIST team intends to use light instead of electricity as a signaling medium. Neural networks have demonstrated remarkable power in solving complex problems, including rapid pattern recognition and data analysis. The use of light would eliminate interference due to electrical charge, and the signals would travel faster and farther, according to NIST researchers.

A traditional computer processes information through algorithms, or software rules. In contrast, “a neural network relies on a network of connections among processing elements, or neurons, which can be trained to recognize certain patterns of stimuli. A neural or neuromorphic computer would consist of a large, complex system of neural networks,” NIST said.

Described in a new paper, the NIST chip overcomes a major challenge to the use of light signals by vertically stacking two layers of photonic waveguides—structures that confine light into narrow lines for routing optical signals, much as wires route electrical signals. This three-dimensional (3D) design enables complex routing schemes, which are necessary to mimic neural systems. This design can then easily be extended to incorporate additional waveguiding layers when needed for more complex networks.

The stacked waveguides form a 3D grid with 10 inputs or “upstream” neurons each connecting to 10 outputs or “downstream” neurons, for a total of 100 receivers. Fabricated on a silicon wafer, the waveguides are made of silicon nitride and are each 800 nanometers (nm) wide and 400 nm thick. Researchers created software to automatically generate signal routing, with adjustable levels of connectivity between the neurons.

Laser light was directed into the chip through an optical fiber. The goal was to route each input to every output group, following a selected distribution pattern for light intensity or power. Power levels represent the pattern and degree of connectivity in the circuit. The authors demonstrated two schemes for controlling output intensity: uniform -beach output receives the same power, and a bell curve distribution - in which middle neurons receive the most power, while peripheral neurons receive less.

To assess the results, researchers made images of the output signals. All signals were focused through a microscope lens onto a semiconductor sensor and processed into image frames. This method allows many devices to be analyzed at the same time with high precision. The output was highly uniform, with low error rates, confirming precise power distribution.

Paper: J. Chiles, S.M. Buckley, S.W. Nam, R.P. Mirin and J. M. Shainline. Published July 26, 2018. Design, fabrication and metrology of 10x100 multi-planar integrated photonic routing manifolds for neural networks. APL Photonics. doi:10.1063/1.5039641

NIST’s grid-on-a-chip distributes light signals precisely, showcasing a potential new design for neural networks. The three-dimensional structure enables complex routing schemes, which are necessary to mimic the brain. Light could travel farther and faster than electrical signals. Image credit: Chiles/NIST
NIST’s grid-on-a-chip distributes light signals precisely, showcasing a potential new design for neural networks. The three-dimensional structure enables complex routing schemes, which are necessary to mimic the brain. Light could travel farther and faster than electrical signals. Image credit: Chiles/NIST
Related CHIPS Articles
Related DON CIO News
Related DON CIO Policy

CHIPS is an official U.S. Navy website sponsored by the Department of the Navy (DON) Chief Information Officer, the Department of Defense Enterprise Software Initiative (ESI) and the DON's ESI Software Product Manager Team at Space and Naval Warfare Systems Center Pacific.

Online ISSN 2154-1779; Print ISSN 1047-9988
Hyperlink Disclaimer